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A great deal of research has been devoted to the problem of the construction of approxi- 
mate equations for the description of static dynamic problems of the mechanics of a continu- 
ous medium with a periodic structure by making use of averaging. The general principle for 
the construction of such approximations and the confirmation of their convergence has been 
formulated in [1-7]. The initial problem contains a small parameter characterizing the 
period size. The essence of the method lies in the fact that the desired solution is approxi- 
mated in the form of the sum of continuous and rapidly oscillating components. A method is 
proposed in this paper for the construction of approximate equations for a system which de- 
scribes the vibrations of a rod of periodic structure with continuously distributed mass 
oscillators [8]. The system of equations can simulate the longitudinal motion of a rod 
structural element with masses supporting a functional load attached to it. The problem of 
the closeness of the approximate solutions to the exact one is investigated. An estimate of 

the convergence is obtained. 

Let us consider the problem of longitudinal vibrations of a rod of periodic structure 
with continuously distributed mass oscillators 

oo 

Uett  ~ ~X a H,r , 

0 

~Yztt -I- 0)~ (re - -  U~.) =: (} in {nt ((o) > O} X Q, 

(1) 

u s = uEt = v s = vet = 0 at t = 0 and ur = 0 at x = 0 and 1. Here us(t , x) and vE(t , x, m) 
are the displacements of the elastic rod and mass oscillators, respectively, m(m) ~ 0 is the 
density of the distribution of mass oscillators, ~ is a parameter (eigenfrequency), r is a 
small parameter which characterizes the periodicity of the elastic properties of the rod, 
a(s)~>~ ao > 0 is a periodic function with the period unity, ao is a constant, f(t, x) is the 
external load, and Q = (0, l) x (0, T). It is assumed that a ~ (E), and E is the period. 

If m~0, then the second equation of the system does not have to be considered, and 
all the following discussions will pertain to the mixed problem for the one-dimensional wave 
equation. 

Let us denote y = x/r and consider the problem in ~1(y) which is periodic in y, 

- ~ . (y) ~ (q~ - ~) : 0, <~i> =: 0, (2) 

where <.> is the average value of a function with the period E. 
~y)>, and let u and v be the solution of the following problems: 

u~ t - qu~.~ = - .! m (co) ut td~o + / in Q, 
o 

~'it + ~o ~v = o~u in {m (co) > O}x Q, 

u = u  t = v = v  t = 0  for t - - O ;  u = O  for x----O, l. 

Let us also set q := <a(l- 

(3) 

The main result of this paper is a proof of the confirmation of the fact that the solution 
of the problem (I) converges under the appropriate conditions to the solution of the problem 
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(3) as s + 0. The nature of the convergence iS determined below, and exact statements are 
formulated, First, the existence of a sol ut~i0n of th~ problem (i) will be proven, and then 
the question of the construction of �9 solutions and their convergence will be dis- 
cussed. 

Let IIk(~) be the Sobolev space of the functions which are integrable in ~ with second 
order along with their own derivatives out to order k ,  f~ = (0, l), and/ t~(~)~--  {~ ~ / / ' (~)]T == 

,~ 

0, x-~ 0, /).We will denote as B i the function space with norm ll~]I~i---I m(~176 de~ 
0 

i = 0, 2, where II'II~ is the norm in Hk(~). In the following the conditions on m will guaran- 
tee nonemptiness of the space B i. Now let us return to the problem (i) and obtain ~ ~oP~ 
estimates of the solution. Let us multiply the second equation of the system (i) by v' in s 
scalar fashion in L~(~) (we denote a derivative with respect to t with a prime) 

(II~(t)ll~ +o,'ll,~(01@ 20~ "~ (~(0, ~(t)) dt 

Taking the relationship (u~(T), vs(~))T = (u~(T), vs(r)) + (Us(T) , V~(~)) into account and 
using the inequalities of Cauchy and Young, we thence derive 

IIv~,(t)ll~ + (~ I[ ~ (t)ll~ + ,i'(]]u;('OIl~ + [lu~, (~)llX) d" , (4) 
0 

where the constant co depends only on T. The dependence of the function v s on the parameter 
will not be shown here. Now we note that when the second equation of the system (i) is 

taken into account one can write the first one in the form 

L~u~ -'= u~, - -  ~ T U~x + au~ = ,  mco~-v~do~ + / ,  a = mco'&o. 
0 0 

(5) 

We will assume for the present that all the norms which arise are finite and integrals over 
' evaluate the terms on the right-hand side ac- are convergent. Let us multiply (5) by us, 

cording to the Cauchy inequality, and make use of (4). Then we will arrive at an inequality 
of the Gronwall type. Integration of it yields 

max {!1 u~, (t)II~ + It u~ (t)I1~} ~< c~, (6) 
O~-I..<T 

and ci depends on m, ao, T, and ]. If one now multiplies (4) by m and integrates over ~ from 
0 to ~, then we will have 

max {llv~ ( )lifo -~ 1[ t'. (t) i]h,}<c,. (7)  
o ~ t ~ T  

LE~iA i. Letm(w), m(~)~ 2 ELI(0, ~); f ~L2(Q). Then there exists a unique solution of 
the problem (1), and 

u~, ~ L == (0, T; H~ (f~)), u~t ~ L ~176 (0, T; L2(F2)), v~ ~ L=(O, T; B2), v~t~ 

~ L ~ ( O ,  T; Bo). 

Let us choose the basis {~j}(j = I, 2, 3, . in the space Ho(~) 
proof, and we will seek Galerkfn approximations " the form 

i=I i=I 

for the existence 

The functions qin and Pin satisfy the system of ordinary differential equations 

�9 i ,, ( ( x )  ) (u~. ,  Cj) + a T u~.~, r + ~ (u~., ~,j) = 1"o) ' 0'~,,, CJ) d~ + (], q'3, 
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Here (.,.) denotes the scalar product in L2(~). The estimates (6) and (7) are valid for Uzn 
' and ' respectively, for and VEn , since one can multiply the second Eq. (i) and (5) by v s us, 

the approximate solutions. One can choose the constants c~ and c2 to be independent of n . 
This will guarantee the solvability of the approximate equations on [0, T]. The question of 
the construction of Galerkin approximations in a similar situation has been discussed in de- 
tail in [9]. According to the estimates (6) and (7), there exists a sequence UEs , Vr 

' § ' + ' *-weakly in L ~ (0, T: H~(~)), such that as s ~ ~ Ues + u~, U~s + u~, yes ve, VEs v e 
L~(0, T; L2(~)), L ~ (0, T; Bo), respectively. The limiting functions u s and vz will satisfy 
(5) and the second equation of the system (i) in the sense of integral identities. 

By virtue of the linearity of the problem, the uniqueness proof is carried out as usual 
for the difference of two possible solutions. 

In order to obtain higher differentiability of the solution, it is necessary to :impose 
additional conditions on the function a(s). As a rule, a(s) is a discontinuous function in 
applications, and therefore the requirement a ~ L~(E) is a natural one. In particular, it 

follows from the estimates obtained that the stresses in the rod o s = aUsx are bounded in 
LZ(Q) (a is Young's modulus). Concerning the accelerations ustt, they are bounded only in 
the space L (0, T; H-~(~)), II-~(~), is conjugate to H~(~). However, for the problem (3), 
where q > 0 is a constant, the estimate utt occurs in more differentiable classes. Notably, 

�9 , o 

we set II ~[~ II~{ : j m~ II ~I ~ ((0; [l~d(,), i ~ 0, 2. 
0 

LE~iA 2. Let I /~ L~(0. T; H~(Q)) under the conditions of Lemma i. Then the inclusions 

u ~ L ~ (0, T; H~ (~) n H~ (~)) ,  ,~, ~ L ~ (0, V; H~ (~)) ,  

~: ~ L ~ (0 ,  T;  f ,,), z, t ~ L ~" (0 ,  T;  Fo) 

occur for the solution of the problem (3). 

Proof. Let us consider the equation for u and v analogous to (5) and multiply it by ' UNX. 
Let us also multiply the second equation of the system (3) by Vxx.' Taking the equation 
(f(t), Uxx' (t)) = -- (fx(t), u~(t)) into account, we note that these two relationships are 
completely analogous to those which were used in the derivation of (6) and (7) and can be 
formally derived from them. To do this, one should replace the norm in Le(9) everywhere by 
the norm in H~(~) and so forth. The difference consists of the fact that the differentiabil- 
ity in x is now greater by one. We thereby obtain estimates similar to (6) and (7): 

' ~ ' ' ' 't' '~ } 
O ~ t ~ T  O ~ l ~ T  

The c o n s t a n t s  ~ i  d e p e n d  on m,  q ,  T, and f . .  From t h i s  Uxx ~ L 2 ( Q )  f o l l o w s ,  and t h e r e f o r e  we 
h a v e  t h e  i n c l u s i o n  u t t  ~ L 2 ( Q )  f r o m  an e q u a t i o n  o f  t h e  f o r m  ( 5 ) .  

One can  s t u d y  t h e  q u e s t i o n  o f  a f u r t h e r  i n c r e a s e  i n  t h e  d i f f e r e n t i a b i l i t y  o f  t h e  s o -  
l u t i o n  i n  a s i m i l a r  f a s h i o n .  

Now let us construct an approximate solution of the problem (i) and prove the assertion 
about its convergence. We will set 

II s -= 11 "~- ~tP 1 -I- ,7 

u = . ( t ,  x) .  u,, := u - r  u,,, ~-= u - %(y)u., F % ( y ) u , , .  (8) 

A function ([~2 which is periodic in y is determined as the solution of the problem (a~2y)~-= 
(a(Pl),,r ( q ' 2 )==  0 ,  w h i c h  h a s ,  j u s t  a s  d o e s  ( 2 ) ,  a u n i q u e  s o l u t i o n  i n  t h e  s p a c e  H~(E) o f  f u n c t i o n s  
which are periodic in y; maxi(gi i ~ell,~it!t(i =--1,2) , and c does not depend on z .  Now we note 

E 

the equation 
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'~ (. l ' i " l •  -= ~c'-'Ao-i ~':"~,-~: .,~ 
f l  r =:= - -  ~ ( ~-=- 

A o -: - ,7.,, ( v ~ ) ,  A~ ,,~,.~ <v) ~ )  ,7.,, ~ o {v) ~.  ), Ao - -  "(V} --.,. = ~ , ~) ,r  = 

Taking this expansion into account, let us substitute ~s into (5) and determine u and~ 
from the equations 

. m, , .~d+  eh,-+-6'h~,  v ~ +  +o_(v u) 0 L , ~  I +. !  " ,  + . . . .  
0 

with null initial and boundary conditions. Here 

t q :=  awl + w, u l-A~u'~ l -Aow, ,  h~ '~  aw~-l--w~u -}-,lou'.v 

One should consider the variables x and y in these equations to be independent. Then we ob- 

tain 

oo 

L~% = f m(o2da& ~ --  ehl--e~h.,., 
0 

d~t t + (o'(d~. - -  e~ - -  ale) = O, L~ = wt + eu,,, 

for e s = u s -- u s and d s = v s -- v. We note in this connection that the initial data for 
and s% s are null, and the boundary conditions agree. 

THEOREM. Let the conditions of Lemma i be satisfied, and in addition let u E H~(Q),and 

m(o~ LI(0, oo). Then we obtain 

m : x  I11"~ (t) - -  L (t} II~ + II u=, (o  - u, (t} Ilol ~ ~ + " : ,  
O .<. t ~ T  

max {11 r', (t) - -  v (t)II% + II v:~i (t) - -  z', (0 I1%} ~< c.r '=" 
O ~ I ~ T  

(9) 

The constants c3 and c4 do not depend upon s. 

PROOF. Let us denote as A s the continuation of the function %e from the boundary 
{t = O]-U-~x ~ O, l} into the region Q such that lJX~lla~ , and cs does not depend upon s for all 

e~e 0. This is possible by virtue of the indicated estimate on l~il and the existing dif- 
ferentiability of the function u. Let us set A s = %g -- ~s" Then for eg = eE + sac and d s 
we obtain a problem with the homogeneous conditions 

L~es = ,f m(~ -- ehl -- e'h2 + eLsSe, 
0 

det! -~- o~ 2 (ds - -  % - -  e-~.:) = O, 

(i0) 

e e = eat = d s = dst = 0 at t = 0, and es = 0 at x = 0, I. Since a ~ L  ~(E), the right-hand 
part of the first equation here along with its own first derivative with respect to t belongs 

to the space L~(0, T; H-I(~)). Consequently, for t ~ [0, T] we have the estimate [i0] 

t t=o 

: IIeet(t)IIt~+ II%(t ) l i ]<c .e  !'llht + e h ~ - -  L[X~lI"-~ck + %ef,f  moF-lld~]lixdo~dT. 
0 0 0 

(ii) 

However, similarly to (4) one can obtain from the first equation of the system (I0) 

II d~ (t)112_~ + ~o ~ 11 d~ (t) [I!~ ~ coto +- I[ ee (t) + ~'Ae (t)L[!t + j' (11% (x) + eAe (r) II'--~ + II ee~ ('r) + EA~x (r)[1"--~) dr . 
0 

(12) 

Therefore we will havefrom this and from (ii) 
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m a x  {lte~t (t)l[~ + Ile, (t) tlg} < c~s 
o g t g T  

by virtue of the Gronwall lemma. Similarly, differentiating the first equation of the system 
(i0) with respect to t, one can show 

max {~e~tt (t)IIL~ + ~ e~, (t)lt~} ~< cos. 
o ~ t ~ T  (13) 

At the same time after multiplication by m and integration over ~ from 0 to ~ we obtain from 
(12) 

max ~ d~ (t)t1~2 <'~ cxoe, 1I ~ / [~  = ,1 mc~ tl ~1~ ((o)Ilt~d~o. (14) 
o ~ t ~ T  0 

( (x~ 0~ produces a mutually single-valued and mutually continuous Since the operator ~. a\Tj~.] 

mapping between H~(~) and H-~(~2) with the appropriate estimate, we obtain 

max II e~ (l)lit 2 ~ c11e 
O~t~T 

from (13) and (14) and the first equation of the system (i0). The second inequality (9) 
follows from this with (13) and a relationship for d C of the kind (4) taken into account. 

The theorem is proved. Thus the convergence of the solution of the problem (i) in the 
form (9) to the solution of the problem (3) as s § 0 has been established. The possibility 
of approximating the solution of the problem of vibrations of a rod of periodic structure by 
the problem of vibrations of a uniform rod has thereby been proven. The physical parameter q 
of the latter is found with the help of the procedure indicated in the paper. We also note 
that an approximate analysis of some problems for Eqs. (3) has been performed in [8]. The 
solutions derived in this paper can be used in Eq. (8) to construct approximations iXg of the 
problem (i). 
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